Phenotypic insecticide resistance status of the Culex pipiens ... - Parasites & Vectors
European Centre for Disease Prevention and Control: Culex pipiens—factsheet for experts. 2020. https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/facts/mosquito-factsheets/culex-pipiens-factsheet-experts. Accessed 31 July 2022.
European Centre for Disease Prevention and Control: West Nile virus infection—annual epidemiological report for 2018. European Centre for Disease Prevention and Control; 2019.
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, et al. Emerging trends in the epidemiology of West Nile and Usutu virus infections in Southern Europe. Front Vet Sci. 2019. https://doi.org/10.3389/fvets.2019.00437.
Clé M, Beck C, Salinas S, Lecollinet S, Gutierrez S, Van de Perre P, et al. Usutu virus: a new threat? Epidemiol Infect. 2019;147:e232.
Mellor PS. Replication of arboviruses in insect vectors. J Comp Pathol. 2000;123:231–47.
Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 2004;17:136–73.
Baldacchino F, Caputo B, Chandre F, Drago A, della Torre A, Montarsi F, et al. Control methods against invasive Aedes mosquitoes in Europe: a review. Pest Manag Sci. 2015;71:1471–85.
World Health Organization. Pesticides and their application—for the control of vectors and pests of public health importance. Geneva: World Health Organization; 2006.
European Chemicals Agency. understanding BPR. https://echa.europa.eu/regulations/biocidal-products-regulation/understanding-bpr Accessed 3 Aug 2022.
European Chemicals Agency. Existing active substance. https://echa.europa.eu/regulations/biocidal-products-regulation/approval-of-active-substances/existing-active-substance. Accessed 3 Aug 2022.
Agency. EC: information on biocides. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances Accessed 4 Oct 2022.
World Health Organization. Global insecticide use for vector-borne disease control. Geneva: World Health Organization; 2021.
Oppold A-M, Müller R. Chapter nine—epigenetics: a hidden target of insecticides. In: Verlinden H, editor. Advances in insect physiology, vol. 53. Cambridge: Academic Press; 2017. p. 313–24.
World Health Organization. Global plan for insecticide resistance management. Geneva: World Health Organization; 2012.
Versteirt V, Boyer S, Damiens D, De Clercq EM, Dekoninck W, Ducheyne E, et al. Nationwide inventory of mosquito biodiversity (Diptera: Culicidae) in Belgium. Europe Bull Entomol Res. 2013;103:193–203.
Deblauwe I, De Wolf K, De Witte J, Schneider A, Verlé I, Vanslembrouck A, et al. From a long-distance threat to the invasion front: a review of the invasive Aedes mosquito species in Belgium between 2007 and 2020. Parasites Vectors. 2022;15:206.
Braverman Y, Chizov-Ginzburg A, Pener H, Wilamowski A. Susceptibility and repellency of Culicoides imicola and Culex pipiens to lambda-cyhalothrin. Vet Ital. 2004;40:336–9.
European Commision. Active substances, safeners and synergists. 2022. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as. Accessed 31 July 2022.
Aldehamee MHM. Effects of topsin pesticide (thiophanate-methyl) on larval phases of Culex pipiens mosquitoes. Euphrates J Agric Sci. 2013;5:1–10.
European Food Safety Authority. Pesticide residue control results—National summary report. European Food safety Authority; 2020.
Vlaamse Milieumaatschappij: Duurzaam gebruik van pesticiden—2019. Vlaamse Milieumaatschappij; 2020.
Nkya TE, Akhouayri I, Kisinza W, David J-P. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol. 2013;43:407–16.
Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1:1446.
Kreß A, Kuch U, Oehlmann J, Müller R. Impact of temperature and nutrition on the efficiency of the insecticide λ-cyhalothrin in full-lifecycle tests with the target mosquito species Aedes albopictus and Culex pipiens. J Pest Sci. 2014;87:739–50.
World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health organization; 2018.
European Chemicals Agency: Information on biocides. 2022. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances?p_p_id=dissactivesubstances_WAR_dissactivesubstancesportlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&_dissactivesubstances_WAR_dissactivesubstancesportlet_javax.portlet.action=dissActiveSubstancesAction. Accessed 31 July 2022.
World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005.
Lorenz M, Aisch G, Kokkelink D. Datawrapper. Create charts and maps [software]. 2012. https://www.datawrapper.de/.
Zayed ABB, Szumlas DE, Hanafi HA, Fryauff DJ, Mostafa AA, Allam KM, et al. Use of bioassay and microplate assay to detect and measure insecticide resistance in field populations of Culex pipiens from filariasis endemic areas of Egypt. J Am Mosq Control Assoc. 2006;22:473–82, 10.
Tmimi FZ, Faraj C, Bkhache M, Mounaji K, Failloux AB, Sarih M. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Parasit Vectors. 2018;11:51.
Ghorbani F, Vatandoost H, Hanafi-Bojd AA, Abai MR, Nikookar H, Enayati AA. High resistance of vector of West Nile Virus, Culex pipiens Linnaeus (Diptera: Culicidae) to different insecticides recommended by WHO in Northern Iran. J Arthropod Borne Dis. 2018;12:24–30.
Rahimi S, Vatandoost H, Abai M, Raeisi A, Hanafi-Bojd A, Rafi F. Resistant status of Culex pipiens complex species to different imagicides in Tehran. Iran J Vector Borne Dis. 2020;57:47–51.
Rahimi S, Vatandoost H, Abai MR, Raeisi A, Hanafi-Bojd AA. Status of resistant and knockdown of West Nile Vector, Culex pipiens complex to different pesticides in Iran. J Arthropod Borne Dis. 2019;13:284–96.
Akiner MM, Simsek FM, Caglar SS. Insecticide resistance of Culex pipiens (Diptera: Culicidae) in Turkey. Pestic Sci. 2009;34:259–64.
Pichler V, Giammarioli C, Bellini R, Veronesi R, Arnoldi D, Rizzoli A, et al. First evidence of pyrethroid resistance in Italian populations of West Nile virus vector Culex pipiens. Med Vet Entomol. 2022;36:390–5.
Guntay O, Yikilmaz MS, Ozaydin H, Izzetoglu S, Suner A. Evaluation of pyrethroid susceptibility in Culex pipiens of Northern Izmir Province. Turkey J Arthropod Borne Dis. 2018;12:370–7.
Akiner MM, Ekşi E. Evaluation of insecticide resistance and biochemical mechanisms of Culex pipiens L. in four localities of east and middle mediterranean basin in Turkey. Int J Mosq Res. 2015;2:39–44.
Kioulos I, Kampouraki A, Morou E, Skavdis G, Vontas J. Insecticide resistance status in the major West Nile virus vector Culex pipiens from Greece. Pest Manag Sci. 2014;70:623–7.
Ataie A, Moosa-Kazemi SH, Vatandoost H, Yaghoobi-Ershadi MR, Bakhshi H, Anjomruz M. Assessing the Susceptibility Status of Mosquitoes (Diptera: Culicidae) in a Dirofilariasis Focus. Northwestern Iran J Arthropod Borne Dis. 2015;9:7–21.
Salim-Abadi Y, Oshaghi MA, Enayati AA, Abai MR, Vatandoost H, Eshraghian MR, et al. High insecticides resistance in Culex pipiens (Diptera: Culicidae) from Tehran, Capital of Iran. J Arthropod Borne Dis. 2016;10:483–92.
Naseri-Karimi N, Vatandoost H, Bagheri M, Chavshin AR. Susceptibility status of Culex pipiens against deltamethrin and DDT, Urmia County, West Azerbaijan Province, northwestern Iran. Asian Pac J Trop Dis. 2015;5:S77–9.
Zeidabadinezhad R, Vatandoost H, Abai MR, Dinparast Djadid N, Raz A, Sedaghat MM, et al. Target site insensitivity detection in deltamethrin resistant Culex pipiens complex in Iran. Iran J Public Health. 2019;48:1091–8.
Fathian M, Vatandoost H, Moosa-Kazemi SH, Raeisi A, Yaghoobi-Ershadi MR, Oshaghi MA, et al. Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of Southeastern Iran. J Arthropod Borne Dis. 2015;9:22–34.
Paaijmans K, Brustollin M, Aranda C, Eritja R, Talavera S, Pagès N, et al. Phenotypic insecticide resistance in arbovirus mosquito vectors in Catalonia and its capital Barcelona (Spain). PLoS ONE. 2019;14:e0217860.
Bkhache M, Tmimi F-Z, Charafeddine O, Filali OB, Lemrani M, Labbé P, et al. G119S ace-1 mutation conferring insecticide resistance detected in the Culex pipiens complex in Morocco. Pest Manag Sci. 2019;75:286–91.
Scott JG, Yoshimizu MH, Kasai S. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic Biochem Phys. 2015;120:68–76.
Liu H, Xie L, Cheng P, Xu J, Huang X, Wang H, et al. Trends in insecticide resistance in Culex pipiens pallens over 20 years in Shandong, China. Parasites Vectors. 2019;12:167.
Jones CM, Machin C, Mohammed K, Majambere S, Ali AS, Khatib BO, et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit Vectors. 2012;5:78.
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi-Tchamen B, Fotakis EA, Kopya E, et al. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep. 2021;11:7322.
Su T, Thieme J, Ocegueda C, Ball M, Cheng M-L. Resistance to Lysinibacillus sphaericus and other commonly used pesticides in Culex pipiens (Diptera: Culicidae) from Chico, California. J Med Entomol. 2017;55:423–8.
Paul A, Harrington LC, Zhang L, Scott JG. Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc. 2005;21:305–9, 5.
Vasquez MI, Violaris M, Hadjivassilis A, Wirth MC. Susceptibility of Culex pipiens (Diptera: Culicidae) Field Populations in Cyprus to Conventional Organic Insecticides, Bacillus thuringiensis subsp. israelensis, and Methoprene. J Med Entomol. 2009;46:881–7.
Grigoraki L, Puggioli A, Mavridis K, Douris V, Montanari M, Bellini R, et al. Striking diflubenzuron resistance in Culex pipiens, the prime vector of West Nile Virus. Sci Rep. 2017;7:11699.
Porretta D, Fotakis EA, Mastrantonio V, Chaskopoulou A, Michaelakis A, Kioulos I, et al. Focal distribution of diflubenzuron resistance mutations in Culex pipiens mosquitoes from Northern Italy. Acta Trop. 2019;193:106–12.
Curtis CF, Lines JD. Should DDT be banned by International treaty? Parasitol Today. 2000;16:119–21.
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. Elife. 2021;10:e65655.
Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS ONE. 2018;13:e0199615.
Wang L, Soto A, Remue L, Rosas ALR, De Coninck L, Verwimp S, et al. First report of mutations associated with pyrethroid (L1014F) and organophosphate (G119S) resistance in Belgian Culex (Diptera: Culicidae) mosquitoes. J Med Entomol. 2022. https://doi.org/10.1093/jme/tjac138.
Comments
Post a Comment