Meta-analysis reveals weak associations between reef fishes and corals - Nature.com

Abstract

Habitat associations underpin species ecologies in high-diversity systems. Within tropical, shallow water coral reefs, the relationship between fishes and corals is arguably the most iconic and highly scrutinized. A strong relationship between fishes and reef-building hard corals is often assumed, a belief supported by studies that document the decline of reef fishes following coral loss. However, the extent of this relationship is often unclear, as evidenced by conflicting reports. Here we assess the strength of this ecological association by relying on literature that has surveyed both fishes and corals synchronously. We quantitatively synthesize 723 bivariate correlation coefficients (from 66 papers), published over 38 years, that relate fish metrics (abundance, biomass and species richness) with the percentage of hard coral cover. Remarkably, despite extensive variation, the pattern of association on a global scale reveals a predominantly positive, albeit weak (|r| < 0.4), correlation. Even for commonly hypothesized drivers of fish–coral associations, fish family and trophic group, associations were consistently weak. These findings question our assumptions regarding the strength and ubiquity of fish–coral associations, and caution against assuming a direct and omnipresent relationship between these two iconic animal groups.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Learn more

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coral use among fishes and the correlation coefficients (r) between fish metrics (abundance, biomass and species richness) and the percentage of coral cover.
Fig. 2: Posterior distribution of correlation coefficients (r) between fish metrics (abundance, biomass and species richness) and the percentage of coral cover.
Fig. 3: Posterior distribution of correlation coefficients (r) between fish metrics (abundance, biomass and species richness) and the percentage of coral cover across two distinct geographic realms.
Fig. 4: Posterior distribution of correlation coefficients (r) between fish abundance and the percentage of coral cover.

Data availability

The datasets generated and/or analysed during our study is available at https://doi.org/10.25903/chbr-5x77.

Code availability

The codes generated during our study is available at https://doi.org/10.25903/chbr-5x77.

References

  1. Morrison, M. L., Marcot, B. & Mannan, W. Wildlife–Habitat Relationships: Concepts and Applications (Island Press, 2012).

  2. MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Article  Google Scholar 

  3. Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).

    Article  Google Scholar 

  4. Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Bellwood, D. R. & Hughes, T. P. Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 1532–1534 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Komyakova, V., Munday, P. L. & Jones, G. P. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178 (2013).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Stoddart, D. R. Ecology and morphology of recent coral reefs. Biol. Rev. 44, 433–498 (1969).

    Article  Google Scholar 

  8. Cheal, A. J. et al. Responses of coral and fish assemblages to a severe but short-lived tropical cyclone on the Great Barrier Reef, Australia. Coral Reefs 21, 131–142 (2002).

    Article  Google Scholar 

  9. Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Jones, G. P. & Syms, G. Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust. J. Ecol. 23, 287–297 (1998).

    Article  Google Scholar 

  11. Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014).

    Article  Google Scholar 

  12. Cole, A. J., Pratchett, M. S. & Jones, G. P. Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish. 9, 286–307 (2008).

    Article  Google Scholar 

  13. Russ, G. R., Rizzari, J. R., Abesamis, R. A. & Alcala, A. C. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol. Appl. 31, e02224 (2021).

    Article  PubMed  Google Scholar 

  14. Bell, J. & Galzin, R. Influence of live coral cover on coral-reef fish communities. Mar. Ecol. Prog. Ser. 15, 265–274 (1984).

    Article  ADS  Google Scholar 

  15. Booth, D. J. & Beretta, G. A. Changes in a fish assemblage after a coral bleaching event. Mar. Ecol. Prog. Ser. 245, 205–212 (2002).

    Article  ADS  Google Scholar 

  16. Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol. 12, 2220–2234 (2006).

    Article  ADS  Google Scholar 

  18. Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Article  Google Scholar 

  19. Ceccarelli, D. M., Emslie, M. J. & Richards, Z. T. Post-disturbance stability of fish assemblages measured at coarse taxonomic resolution masks change at finer scales. PLoS ONE 11, e0156232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yan, H. F. & Bellwood, D. R. Multi-decadal stability of fish productivity despite increasing coral reef degradation. Funct. Ecol. 37, 1245–1255 (2023).

    Article  CAS  Google Scholar 

  21. Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).

    Article  Google Scholar 

  22. Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7, 456 (2019).

    Article  Google Scholar 

  24. Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).

    Article  PubMed  Google Scholar 

  25. Siqueira, A. C., Muruga, P. & Bellwood, D. R. On the evolution of fish–coral interactions. Ecol. Lett. 26, 1348–1358 (2023).

    Article  PubMed  Google Scholar 

  26. Pratchett, M. S. et al. in Oceanography and Marine Biology Vol. 46, 251–296 (CRC Press, 2008).

  27. Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).

    Article  Google Scholar 

  28. Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. Biol. Sci. 288, 20210274 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Borenstein, M., Hedges, L. V, Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-analysis (John Wiley & Sons, 2009).

  31. Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 82, 591–605 (2007).

    Article  PubMed  Google Scholar 

  32. Schober, P. & Schwarte, L. A. Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126, 1763–1768 (2018).

    Article  PubMed  Google Scholar 

  33. Bejarano, I. & Appeldoorn, R. S. Seawater turbidity and fish communities on coral reefs of Puerto Rico. Mar. Ecol. Prog. Ser. 474, 217–226 (2013).

    Article  ADS  Google Scholar 

  34. Benfield, S., Baxter, L., Guzman, H. M. & Mair, J. M. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J. Mar. Biol. Assoc. U. K. 88, 1331–1341 (2008).

    Article  Google Scholar 

  35. Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).

    Article  Google Scholar 

  36. Bouchon-Navaro, Y. & Bouchon, C. Correlations between chaetodontid fishes and coral communities of the Gulf of Aqaba (Red Sea). Environ. Biol. Fishes 25, 47–60 (1989).

    Article  Google Scholar 

  37. Brewer, T. D., Cinner, J. E., Green, A. & Pandolfi, J. M. Thresholds and multiple scale interaction of environment, resource use, and market proximity on reef fishery resources in the Solomon Islands. Biol. Conserv. 142, 1797–1807 (2009).

    Article  Google Scholar 

  38. Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).

    Article  Google Scholar 

  39. Campbell, S. J. et al. Avoiding conflicts and protecting coral reefs: customary management benefits marine habitats and fish biomass. Oryx 46, 486–494 (2012).

    Article  Google Scholar 

  40. Chung, F. C., Komilus, C. F. & Mustafa, S. Effect of the creation of a marine protected area on populations of Coral Trout in the coral triangle region. Reg. Stud. Mar. Sci. 10, 1–9 (2017).

    CAS  Google Scholar 

  41. Cox, C., Valdivia, A., McField, M., Castillo, K. & Bruno, J. F. Establishment of marine protected areas alone does not restore coral reef communities in Belize. Mar. Ecol. Prog. Ser. 563, 65–79 (2017).

    Article  ADS  Google Scholar 

  42. Crosby, M. P. & Reese, E. S. Relationship of habitat stability and intra-specific population dynamics of an obligate corallivore butterflyfish. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 13–25 (2005).

    Article  ADS  Google Scholar 

  43. Dominici-Arosemena, A. & Wolff, M. Reef fish community structure in the Tropical Eastern Pacific (Panamá): living on a relatively stable rocky reef environment. Helgol. Mar. Res. 60, 287–305 (2006).

    Article  ADS  Google Scholar 

  44. Emslie, M. J., Pratchett, M. S., Cheal, A. J. & Osborne, K. Great Barrier Reef butterflyfish community structure: the role of shelf position and benthic community type. Coral Reefs 29, 705–715 (2010).

    Article  ADS  Google Scholar 

  45. Emslie, M. J. et al. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia's Great Barrier Reef. Mar. Biol. 159, 1293–1304 (2012).

    Article  Google Scholar 

  46. Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fishes 102, 479–497 (2019).

    Article  Google Scholar 

  47. Espinosa-Andrade, N., Suchley, A., Reyes-Bonilla, H. & Alvarez-Filip, L. The no-take zone network of the Mexican Caribbean: assessing design and management for the protection of coral reef fish communities. Biodivers. Conserv. 29, 2069–2087 (2020).

    Article  Google Scholar 

  48. Feary, D. A. et al. Fish communities on the world's warmest reefs: what can they tell us about the effects of climate change in the future? J. Fish Biol. 77, 1931–1947 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Feeney, W. E. et al. Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island. Sci. Rep. 11, 1–8, 14548 (2021).

    Article  Google Scholar 

  50. Galbraith, G. F., Cresswell, B. J., McCormick, M. I., Bridge, T. C. & Jones, G. P. High diversity, abundance and distinct fish assemblages on submerged coral reef pinnacles compared to shallow emergent reefs. Coral Reefs 40, 335–354 (2021).

    Article  Google Scholar 

  51. Garpe, K. C. & Öhman, M. C. Non-random habitat use by coral reef fish recruits in Mafia Island Marine Park, Tanzania. Afr. J. Mar. Sci. 29, 187–199 (2007).

    Article  Google Scholar 

  52. Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia 498, 191–211 (2003).

    Article  Google Scholar 

  53. Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247 (2014).

    Article  ADS  Google Scholar 

  54. Graham, N. A. J., Wilson, S. K., Pratchett, M. S., Polunin, N. V. C. & Spalding, M. D. Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers. Conserv. 18, 3325–3336 (2009).

    Article  Google Scholar 

  55. Harborne, A. R...

Comments

Popular posts from this blog

This fish is worth $300,000 - New York Post

NilocG Launches New Website for the Only All-in-One Thrive Fertilization Solution for Planted Aquariums - PRNewswire

Reviews: Horrified SeaQuest Aquarium Visitors Tell All | PETA - PETA